Informing an Effective Response to Climate Change (2010)

National Academies Press: OpenBook

Visit NAP.edu/10766 to get more information about this book, to buy it in print, or to download it as a free PDF.

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

CHAPTER ONE
Introduction

Global climate change has become one of the nation’s most significant long-term policy challenges, and addressing this challenge will require an array of often complex decisions by many different sectors of society and levels of government. Each decision will take on a distinct character, will involve a different mix of participants, and will be made in the context of many other policy issues. The options for responding to climate change involve a broad range of strategies, including (1) limiting greenhouse gas (GHG) emissions to slow the rate and limit the extent of climate change, (2) taking adaptation actions to reduce potential damages from climate change impacts, (3) expanding research and development to provide better low-carbon options for the national and global economy, and (4) improving scientific understanding about climate change and its impacts to enable better informed decision making.

Just as the participants and issues will vary, the needs for information and institutional support will differ across different groups and levels of decision making. For example, the general public would benefit from a better basic understanding of climate change and how it interacts with important values about economic growth, national security, quality of life, health, human rights, and the natural landscape. The general public also needs better understanding of how to think about the various risks of climate change and the responses to it (including the risks of not responding). Likewise, farmers and transportation planners want climate change forecasts at local and regional scales, including projections of the likelihood, severity, timing, and location of specific climate impacts. Decision makers in business and government require economic cost-benefit analyses and information to judge how best to allocate finite resources and make tradeoffs between competing values. People need information, which is often derived by trial and error, to help clarify over time particular aspects of each climate related problem, the emerging options available to respond to the problem, the plausible range of outcomes, and the types of institutions required for supporting effective action in the face of uncertainty.

Decision makers—public and private, national and local—need access to up-to-date and reliable information about current and future climate changes, the impacts of such changes, the vulnerability to these changes, and the response strategies for reducing emissions and implementing adaptation. Also important is the information that is needed to assess whether the decisions or responses are successful or

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

should be revised in the light of experience and new knowledge. After considerable discussion of the task, and the relation of its work to the other three America’s Climate Choices (ACC) panels, the Informing panel chose to investigate the following key questions for this report:

This report sets out to identify the types of decisions that may need to be made about climate change by governments, the private sector, and society. It examines the ways in which information to support these decisions can be provided more effectively through the development of new, authoritative and accessible information, especially about climate impacts and GHG emissions. Finally, it looks at the development of decision tools that facilitate the use of information and integrate the key values, data, and processes that interact to shape alternative futures.

Although we hope that our findings will be of interest to a wide range of decision makers, our recommendations are directed primarily toward the federal government and its role in informing and coordinating a national response to climate change.

THE CHALLENGE OF CLIMATE CHANGE

The ACC companion reports (Limiting the Magnitude of Future Climate Change (NRC, 2010d), Adapting to the Impacts of Climate Change (NRC, 2010a), and Advancing the Science of Climate Change (NRC, 2010b) provide detailed overviews of the causes, consequences, and range of responses to climate change in the United States and globally. Collectively they communicate a sense of urgency about the risks of climate change and the need to make immediate decisions related to reducing GHG emissions, implementing adaptation strategies, and investing in research.

This ACC panel agrees with the conclusions of the report Advancing the Science of Climate Change (NRC, 2010b) that “[c]limate change is occurring, is caused largely

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

FIGURE 1.1 Yellow arrows track what summers are projected to feel like under a lower emissions scenario, while red arrows track projections for a higher emissions scenario. By late this century, residents of New Hampshire would experience a summer climate more like what occurs today in North Carolina. SOURCE: Frumhoff et al. (2007).

FIGURE 1.1 Yellow arrows track what summers are projected to feel like under a lower emissions scenario, while red arrows track projections for a higher emissions scenario. By late this century, residents of New Hampshire would experience a summer climate more like what occurs today in North Carolina. SOURCE: Frumhoff et al. (2007).

by human activities, and poses significant risks for—and in many cases is already affecting—a broad range of human and natural systems.” This is consistent with the analyses of the Intergovernmental Panel on Climate Change (IPCC, 2007b), which found that the global climate is warming, that this warming is very likely due to greenhouse gases from human activity, and that unless we reduce GHG emissions, the climate will warm by 2°F to 11.5°F (1.1°C to 6.4°C) by the end of the century and will have serious impacts on ecosystems, water resources, low latitude agriculture, coasts, ocean acidification, and increased risks of abrupt or irreversible change (Figure 1.1). The IPCC also recommends an iterative risk management approach 1 that includes adaptation and emissions reduction strategies and that takes into account damages, co-benefits, sustainability, equity, and attitudes toward risk (IPCC, 2007b).

New research and data have confirmed and updated the trends and analyses of the IPCC and have suggested further reasons for concern. Climate data analyses show that the earth has continued to warm, sea ice and glaciers are shrinking, and regional

An iterative risk management framework defines risk as the impact of some adverse event multiplied by the probability of its occurrence (see IPCC, 2007b).

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

changes in the United States are occurring, including increases in winter temperatures and intense drought in the Southwest (Karl et al., 2009). Greenhouse gas emissions have continued to increase, with carbon dioxide (CO2) concentrations reaching to 385 ppm in 2008, the highest level in 2 million years. Emissions from fossil fuel use and cement production have increased by an average 3 percent per year since 2000 with a growing proportion of emissions driven by economic development in Asia (LeQuéré et al., 2009). There are also indications that the capability of land and oceans that naturally take up or absorb carbon dioxide is weakening, contributing to higher levels of this GHG in the atmosphere (House et al., 2008; LeQuéré et al., 2009).

These trends are occurring despite efforts in some parts of the world to limit emissions and are moving toward the higher end of the emission scenarios used by IPCC and thus toward faster and more intense climate changes. Several recent modeling studies suggest that the delays in limiting emissions and the difficulties in turning things around even with immediate deployment of low-carbon technologies and forest protection mean that there is a very high chance of exceeding 450 ppm of carbon dioxide equivalent 2 (CO2e) GHG concentrations with consequently higher risks of higher temperatures (for more discussion see Calvin et al., 2009; NRC, 2010d). These results suggest that delays in acting now may make it more difficult and more expensive for decisions makers to respond later.

Although the extent of future climate change and the exact nature and severity of impacts remain uncertain, continuing to emit GHGs at the current rate is expected to create long-term or irreversible changes in earth systems and a variety of undesirable consequences that will require profound adaptations on the part of both human and natural systems (IPCC, 2001, 2007b; NRC, 2010b; Solomon et al., 2009). Responding effectively to these risks requires effective long-term planning because decisions and actions taken now will have important implications for decades to come. The emissions reduction strategies and adaptation responses that will reduce the magnitude of climate change and reduce its impacts require active collaborations across science, technology, industry, government, and the public.

The earth and climate systems, like economic and social systems, exhibit complex and chaotic behaviors that can be unpredictable and are difficult to model. Not only is the climate a chaotic system, but humans are pushing it into poorly understood patterns and processes where there are chances of rapid climate change and surprise. The uncertainties regarding the details of future climate change depend on which decisions

For GHG emissions inventories and mitigation, the common practice is to compare and aggregate emissions by using global warming potentials (GWPs). Emissions are converted to a carbon dioxide equivalent (CO2e) basis using GWPs as published by the IPCC.

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

society makes about future energy and resource use, the complexity associated with the interactions between natural and human caused climate change and with other environmental changes, the difficulties of modeling climate at the regional scale, and the incomplete understanding of processes (e.g., carbon cycle and ice sheet dynamics) and of the vulnerability and adaptive capacity of human and natural systems at the local scale.

In Chapters 5 and 6, the panel addresses the need for monitoring, reporting, verification, and information systems that can help manage these uncertainties. Decisions need to be based on scenarios that cover the range of possible developments in socioeconomic and environmental systems. Uncertainties in understanding climate change and response options—as in other areas of economic, technological, social, military, and environmental policy—are an important reason for action that can help reduce risks. Uncertainty is not a reason for inaction. Rather, with knowledge of uncertainties we can anticipate a range of possibilities, some of which may be so severe that we should act now to reduce the chances of their occurrence. Effective decisions require the best available information, including information about the level and nature of uncertainty, so that policy makers and others can make careful judgments about what to do.

Communicating uncertainty often poses a problem for those trying to generate support for measures that might reduce the risks associated with climate change, especially in explaining the science and the choices to the public (Figure 1.2). An effective American response to climate change requires a solid base of information and a strong set of institutions that can evaluate the risks, costs, and opportunities presented by climate change, can make the best possible decisions about how to respond, and can communicate the decisions and the rationale behind them clearly to the relevant audiences.

Decision makers and stakeholders will need sector specific information to respond to climate change and may assign different values both to the impacts of climate change and to the costs and benefits of policy actions to limit or adapt to these impacts. Hence, a fundamental part of climate change policy must be deciding how to allocate finite resources among the diverse options available for limiting emissions, adaptation, or research. For that, decision makers need a clear understanding of and accurate information on the costs, risks, tradeoffs, and potential benefits of each option for various segments of society. This is not unique to the problem of climate change; most important decisions are made without perfect clarity. The choice of options is seldom either-or, but rather it is a judgment about what constitutes the right mix and also

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

FIGURE 1.2 This simple visualization of how climate change might affect temperatures in the south-western United States portrays uncertainty in two ways: through a low and high emissions scenario (one where fossil fuel use continues to increase, one where use is limited) and through brackets that show the range of uncertainty for temperatures under each scenario. SOURCE: USGCRP (2009).

FIGURE 1.2 This simple visualization of how climate change might affect temperatures in the south-western United States portrays uncertainty in two ways: through a low and high emissions scenario (one where fossil fuel use continues to increase, one where use is limited) and through brackets that show the range of uncertainty for temperatures under each scenario. SOURCE: USGCRP (2009).

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

how the right combination of options is likely to vary across geographic regions and over time.

DECISION MAKERS, THEIR INFORMATION NEEDS, AND THE CHALLENGE OF RESOURCE ALLOCATION

Table 1.1 provides a range of examples of who may need to make decisions about climate change, ranging across scales of government to the private sector, non-governmental organizations (NGOs), and individuals, and the type of decisions they may wish to make. This table makes it clear that information and decision tools need to be made available to a broad audience and that focusing only on the U.S. Federal government would miss many of the key decisions and responses that will be made across America.

The table shows that decision makers are faced with many different decisions but of course most decision makers have limited financial, human, or political resources and cannot take action on everything so must make choices and set priorities about where to allocate scarce resources. Not surprisingly, many of the fundamental choices regarding climate change policy involve the allocation of resources. In making such allocations, decision makers are concerned with how to establish objective, defensible, return on investment criteria for their constituents, or, in the case of business, their shareholders. Resource allocation takes into account not only near-term priorities but also long-term objectives, which include the economy, non-climate decisions, and the effect on future generations. They need to balance and communicate the costs of not acting with those of taking action; they must decide how much to spend on different types of actions, such as emissions reductions and adaptation, and which sectors and places should receive resources to respond. Because climate change decisions often involve benefits related to health, safety, equity, and environmental concerns, policy makers must decide whether and how to include such non-monetary benefits in the return on investment analysis. The ability to create and implement effective climate policy will likely come down to the availability of resources, and the choices policy makers make will be directly linked to the price assigned to the harms against which one hopes to protect.

As more communities become aware of the need to prepare for the inevitable impacts of climate change, policy makers may be faced with the choice of directing resources to programs designed to limit GHG emissions or to programs that seek to build resilience against future impacts. At the local level, strategies to limit emissions tend to focus on energy (conservation, efficiency, and development), low-carbon technol-

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

TABLE 1.1 Examples of Decision Makers and the Choices They Make

Whether to participate in international agreements and bilateral/multilateral assistance programs relating to climate change

Whether to regulate GHG emissions and, if so, what policy mechanisms (e.g., cap-and-trade, carbon taxes, standards, etc.) to use, how these mechanisms are designed, and what agencies and institutions will administer them

How and where to reduce GHG emissions from federal activities

How to adapt to climate change on federal lands and jurisdictions

Priorities for funding research, technology development, and observing systems

Setting standards and guidelines for carbon management (e.g., energy efficiency, information labels, GHG reporting, and carbon disclosure for investors), coastal protection, water allocation, etc.

How to ensure the security of food, water, and health for the U.S. population, how to respond to potential national security risks of climate change, and how and whether to respond to human security concerns in other regions of the world

What is the best way to educate and communicate about climate change to the public

State, tribal, and local government

How to control GHG emissions, especially from utilities, transport, and buildings, and whether to join regional trading initiatives, and how to encourage citizens to reduce their emissions

Setting renewable portfolio and energy efficiency standards

How to incorporate climate change into land use planning, infrastructure projects, and disaster planning

How to amend the building code to reduce GHG emissions and to address the impacts of climate change, including the increased potential for flooding, droughts, high winds, heat waves, and disruption of utility services, as well as the need for buildings to be inhabitable without energy

How and whether to limit emissions from state and local government operations

How to facilitate adaptation through policy decisions about insurance cover, environmental protection, land use, etc.

Potential information campaigns and educational guidelines

How to reduce GHG emissions from operations and supply chains, and whether to participate in regional and global carbon markets and offsetting

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

How to develop good information for consumers about carbon in products and other sustainable practices

Whether and how to influence government and international policy through best practice, lobbying, business networks, etc.

Whether and how to insure climate risks

How to adapt to climate risks and respond to climate impacts in a globalized market

Whether to invest in businesses and technologies that are vulnerable to climate risks or that are not limiting their emissions

Whether to start up a new business focused on solutions to climate change

How to respond to pressure from NGOs, shareholders, and investors concerning climate change

How and what to communicate about climate change (especially from media and cultural sector)

Funding research and development

Non-governmental organizations (e.g., trade, religious, environmental, humanitarian, foundations)

How to reduce their own GHG emissions and influence the emissions of their members or the public

Where and how to facilitate adaptation

Whether and how to influence government, the private sector, and the public through information, communication, action, networks, and lobbying

Funding research and responses to climate change

How seriously to judge the threat of climate change and how to weigh current costs against future benefits

How to prepare by adapting homes, lifestyles, and landscapes to climate change

What actions to take to reduce their emissions in household energy use, travel, and purchase of household goods and food

Should their investments (including pensions) be in portfolios with low climate risk or in climate responsible businesses

Whether and how to try and inform or influence others (families, employers, educators, politicians, and neighbors) or hold them accountable for actions on climate change

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

ogy, and transportation. Adaptation strategies tend to focus on infrastructure (roads, bridges, ports, and coastal development), water (conservation, supply, and management), disaster preparation, and public health and safety concerns. Not surprisingly, many local policy makers are searching for initiatives that address both limiting emissions and adaptation, such as land use planning, distributive energy systems, open space preservation, and green space development.

Some of these strategies are already functions of local government, including comprehensive planning, building and energy codes, neighborhood outreach, equipment purchasing, and infrastructure planning and development. Others are new to local government, including involvement in markets for GHGs, carbon taxes, or ways to pilot the development of new technologies and energy sources, where the economics of resource allocations are less clear.

One of the most significant resource allocation questions is how to address the challenge of the nation’s infrastructure and the barriers it poses to both emissions reduction and adaptation. Power generation, transport, protected areas, water resources, and urban development are the result of major infrastructural investments that have locked the nation into pathways and patterns of high GHG emissions and vulnerabilities to the impacts of climate change. Infrastructure may be the nation’s greatest barrier and, as discussed below, its most powerful opportunity to limit emissions and adapt to climate change. Decision makers must consider whether to replace this infrastructure now or over longer periods of replacement and reinvestment, and whether to prevent the building of new infrastructure that increases climate risks.

As climate change policy is addressed, decision makers must also decide how quickly to implement new policy. This choice is especially challenging given both the general need for more and better scaled information on climate change and its impacts, and also the uncertainties associated with new energy development. Decision makers are wary of making wrong choices, such as picking the wrong technology or building the wrong “infrastructure of the future.” On the other hand, many policy makers have embraced the idea that taking action to respond to climate change is urgent and that they play a vital role in catalyzing change through successful policy action, even providing inspiration for other decision makers to take action. Thus, some policy makers are innovating new decision making processes that embrace failure as an element of future success and evaluate the benefits of being “first movers” in the development of new technologies, models of action, and policy.

Economic information such as costs and benefits of different actions, return on investments and avoided damages, and distributional and competitive effects on local economies, firms, and households is essential to such resource allocation decisions.

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

However, such information is fraught with assumptions about how to cost and value different actions now and into the future, including those that have non-monetary effects on areas such as ecosystems and health. For example, a local decision maker may worry about how to balance the costs and risks of regulating local industrial emissions with the emerging possible impacts of climate change on local tourism or water supplies and costs of adapting these sectors. But the decision maker is also faced with the problem of competing priorities where they may feel that other urgent issues—such as poverty, housing, and crime—demand the bulk of available financial and human resources, leaving little for responding to climate change. We discuss some of these challenges, and some tools that may help with such complex economic decisions, in Chapter 4.

Decision makers are increasingly aware of the multidisciplinary nature of climate change policy even as they work to make the most of available resources. They need to create policy and stakeholder teams that stretch beyond traditional notions of jurisdiction; they are also seeking ways to leverage resources not only across disciplines but also across physical and temporal scales to maximize strategies and investments. For example, they seek to take advantage of economies of scale to improve purchasing power and the marginal costs of new technologies.

Decision makers also confront the choice of how to best integrate policies and initiatives across multiple geographic and temporal scales. An example might be a local neighborhood development initiative to help a community become more energy efficient, walkable, and environmentally friendly. This initiative would benefit greatly if integrated with a larger regional plan that involves building new or more efficient public transit along a nearby corridor, and an energy plan to construct a connected energy district. Thus, decision makers today need information and support to help them make the major infrastructure investment choices that will be effective across a wide range of possible future conditions.

BARRIERS TO EFFECTIVE DECISION MAKING

Framing of Climate Change Affects Decision Making and Responses

Decision making about climate change is often conducted not only under conditions of scientific uncertainty but also by people who may be unfamiliar with the details and weight of scientific evidence. Under these conditions, human judgment is greatly influenced by a number of factors, including the “framing” of the problem itself (Ferree et al., 2002; Gamson and Modigliani, 1989; Nisbet and Mooney, 2007; Tversky and

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

Kahneman, 1981). “Frames” often take the form of a relatively small set of interpretive stories or contextual clues that guide attention, highlight certain problem features (and not others), and influence subsequent decision making. The use of different frames can lead to dramatically different choices. Nisbet (2009) argues that people “rely on frames to make sense of and discuss an issue; journalists use frames to craft interesting and appealing news reports; policy makers apply frames to define policy options and reach decisions; and experts employ frames to simplify technical details and make them persuasive.” The way an issue is framed often affects the way in which people use information and choose information sources and can constrain the range of decisions and choices they see as available to themselves and others.

Climate change itself has been framed in many different ways, each of which leads decision makers to think differently about how to respond (see Table 1.2). For example, one of the dominant sources of conflict in international climate negotiations derives from three alternative framings of the source of GHG emissions (national, per capita, and historical) and, therefore, who is responsible for reducing emissions. Using a national frame, China is now the world’s largest emitter of CO2e, and the United States is second. Russia is the third largest emitting country and India is now the fourth largest national emitter of CO2e (Table 1.2).

The national frame alone suggests that China, Russia, the United States, and India must reduce their emissions immediately if the world is to restrain climate change. 3 The per capita frame (dividing national emissions by the number of people in each country), however, tells a different story and leads to very different conclusions. The United States is by far the largest emitter in the world by per capita. By contrast, the average Chinese and Indian emit significantly less. Using this frame, Chinese, Indian, and other developing country negotiators argue that it is unfair for developed countries like the United States, who continue to emit far more carbon per person, to demand emission reductions from countries that are struggling to lift the living standards of billions currently living in poverty. These two contrasting frames lie at the heart of the current international climate debate and lead to different ways of assigning responsibility for action.

Finally, the historical frame identifies the primary sources of the already high concentrations of GHGs in the atmosphere today and further complicates the story. Cumulatively, since 1751, at the level of individual countries, the United States has been by far the largest emitter of carbon, while the USSR is the second largest emitter (based

Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory; see http://cdiac.ornl.gov/trends/emis/meth_reg.html.

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

TABLE 1.2 Three Frames for Carbon Emissions (in Million Metric Tons)—National, Per Capita, and Historical—Lead to Different Conclusions about Responsibility for Climate Change

SOURCE: data from CDIAC, Potsdam Institute for Climate Impact Research, Boden et al. (2009)

on data from 1830-1991). 4 China is the third largest emitter in the historical frame. Arguably then, the United States and China bear particular historical responsibility for the already high concentrations of GHGs in the atmosphere. These three frames—national, per capita, and historical—thus each lead to different conclusions about “who” is primarily responsible for climate change and therefore who should lead in reducing emissions. In addition, Chakravarty et al. (2009) suggest a framework for allocating emissions at the individual level. Each of these frames is supported by data that can be presented in several alternative ways and where the accuracy of the information may be questioned.

Other ways of framing the climate change issue, from environmental, economic, energy, health, or ethical perspectives, also draw on particular data and analyses at a variety of scales. For example, environmental framings often draw on information about how climate change will affect species in specific localities, and economic framings draw on information about the costs of responding in different sectors and regions.

Carbon dioxide data for Russia is 1992-2006 (CDIAC, http://cdiac.ornl.gov/)

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

In the media and in public discourse, too, climate change is often framed in very different ways. Sometimes it is framed as an “environmental problem”—understood through the lens of human impacts on the natural environment, ecosystems, and particular species (e.g., polar bears, coral reefs, and tropical rainforests). Another common frame portrays climate change as a “Pandora’s box”—a long list of potentially disastrous impacts (e.g., sea level rise, drought, floods, heat waves, infectious diseases, famines, and water shortages; Nisbet, 2009).

Climate change also has been described within a “political frame” as a Democratic versus Republican, liberal versus conservative issue, or a debate between specific political leaders (e.g., Al Gore versus George W. Bush; Dunlap and McCright, 2008). Another common frame is climate change as an “economic problem”—one where either the impacts (sea level rise, drought, floods, heat waves, etc.) or proposed policies to address it (carbon taxes, cap-and-trade systems, etc.) are potential threats to local, regional, national, and international economic growth and development.

More recently, new frames have emerged, including climate change as a “moral and ethical problem,” often asserted through specific religious beliefs and teachings; a “national security problem” with major geopolitical implications; a “public health problem” with serious potential consequences for human well-being; a “human rights problem”; or as an “economic opportunity” for the development of green jobs and new competitive industries (CNA Corporation, 2007; Leiserowitz, 2007; Nisbet, 2009).

Scientific uncertainty itself is used as a frame that has often been deployed strategically by groups and special interests seeking to cast doubt on the reality of human caused climate change (McCright and Dunlap, 2000, 2003). Meanwhile, environmentalists sometimes attempt to amplify other scientific uncertainties to motivate action (e.g., the possibility of tipping points of abrupt and catastrophic climate change; Nisbet, 2009). Each of these frames calls attention to different features of the issue, resonates in different ways with different audiences, and implies a need for different kinds of policy responses (Maibach et al., 2009).

Some people now argue that climate change should be reframed as a clean energy issue. Climate change remains a relatively low national priority (Leiserowitz et al., 2009), but energy and energy independence are important to the public and policy makers across political party lines. Solving the nation’s energy challenges will require many of the same policies and investments needed to reduce GHG emissions, such as improved energy efficiency, conservation, and the development of new renewable sources of energy. Some argue, therefore, that a more effective way to address climate change is to focus not on emission targets and timetables (a “pollution frame”) but on national investments to develop the new “clean energy” economy of the 21st century

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

(Nordhaus and Shellenberger, 2007). Finally, others argue that climate change itself should be placed within the broader context of sustainable development, which attempts to integrate and harmonize economic prosperity, environmental protection, human development, and security (Kates et al., 2005).

Each of these frames can now be found circulating in scientific reports, media stories, political debates, and public discourse. Meanwhile, decision makers from different sectors of society strategically select, ignore, amplify, and downplay these various frames as a way to either raise or lower public concerns about the issue and support or oppose particular policy options (Leiserowitz, 2006, 2007). Framing is “an unavoidable reality of the communication process” (Nisbet, 2009); thus, efforts to inform climate change decision making and action will invariably involve some element of framing—highlighting certain features of the issue and ignoring or discounting others. Likewise, different individuals and groups within American society respond to each of these frames in very different ways.

National efforts to inform climate change decision making and action by diverse individuals and institutions across the United States must recognize that framing matters and different audiences are likely to respond to various frames in different ways. Stakeholder groups often do not take multiple perspectives into account. For example, decision makers may frame emissions reductions and adaptation as unnecessary regulation and government interference, without taking into account the risks associated with inaction in the face of long-term climate change. This kind of overly narrow problem framing can limit the choice of action or negatively affect the quality of the decisions that are made.

Resource allocation constraints and conflicting frames are only two of the barriers to effective decision making about climate change. At the most fundamental level, efforts to inform effective decisions in the climate change arena face the same major barriers, mainly political and economic, as other major social problems, such as health care. Attempts to address social problems invariably provoke some degree of political disagreement, and the search for solutions to major problems almost always require major investments, which may lead to additional controversy because such investments may necessitate tradeoffs. Those who want to inform and make decisions must wrestle with uncertainties concerning information, the efficacy of proposed solutions, the possibility of unanticipated consequences resulting from decisions, the challenge of implementing the solution, and sustaining the action over time. There are also a number of barriers that influence many decisions about climate change that are specific to certain types of decision makers but that can be overcome through particular strategies (Table 1.3).

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

TABLE 1.3 Some Barriers to Effective Climate Decisions and Actions and Roads around Those Barriers

Barrier to Action

Overcoming the Barriers

Different framings of climate change

Emphasize process as well as information products, establish and support processes for stakeholder engagement and knowledge transfer, understand how different framings influence decision making, and learn how to best communicate climate change

Economic and resource allocation constraints

Increase resources available to respond to climate change, provide good information on the implications of alternative allocations, consider long-term issues such as those of infrastructure

Provide decision-relevant information to inform political initiatives for limiting climate change and adapting to it, provide good science to address misinformation and disinformation, educate the public regarding climate choices, and consider responsibility to future generations and people in other nations

Conduct research and observations to improve information, increase access to reliable information at appropriate scales, and communicate information clearly

Institutional and organizational constraints

Identify institutional barriers to decision making including rules, cultures, and organizational structures; promote interagency and public-private partnerships, establish consistent standards and targets, seek institutional stability, and maintain and enhance boundary organizations

Lack of insight into effective decision processes

Establish principles of effective decision making including stakeholder engagement, linking information producers and users, and adaptive management

Barriers Associated with the Way Decisions Are Made

One key barrier to decision making, especially by government, is a misunderstanding of how the most effective decisions are made. For example, those seeking to aid in the decision making process often assume that the provision of sound scientific findings, assembled in the right format, delivered to “end users” (that is, decision makers) will automatically improve the quality of decisions and actions that are subsequently taken. Or they assume that the best way to inform decisions is to conduct research to reduce uncertainties in scientific projections. Different decision makers require different levels of certainty (Slocum et al., 2003) and types of information which may

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.

depend on personal values, their institutional rules, and handling of potential risk. This way of thinking contrasts with what is currently known about factors that affect the decision making process. Prior National Research Council reports, including Public Participation in Environmental Assessment and Decision Making (NRC, 2008b) and Informing Decisions in a Changing Climate (NRC, 2009a), provide extensive discussions of barriers to effective and informed decision making. For example, the literature on public engagement in decision making for the environment points out the importance of early and continuous stakeholder engagement in decision related activities. It also emphasizes the need to conduct scientific investigations in ways that address the concerns of decision makers, which can be quite different from those of the scientists who generate the information. The reports review experience with decision support in coping with climate variability and change, and stress the importance of developing appropriate frameworks for supporting climate related decisions. They find that sound decisions require both good information and well-structured processes for developing, providing, and using that information and concluded that efforts to inform decisions are more likely to be judged effective when they follow the six principles described in Box 1.1 (NRC, 2009a).

Processes that feature ongoing, two-way communication between information producers and decision makers provide the best way to identify decision makers’ needs and ensure that useful information is produced and that its intended users are prepared to receive it. These engagement processes can lead to the development of social networks consisting of information producers, users, and boundary organizations that perform key communication functions for particular constituencies, that is, groups of information users with similar needs. Much of the guidance offered in the reports is counterintuitive, where the notion that the needs of decision makers is competing with science-related needs or ideas that scientists may have about “end-user” information requirements. Of rising importance in the years to come is joint production of knowledge in accord with users’ needs. This perspective is elaborated in the report Informing Decisions in a Changing Climate (NRC, 2009a).

Effective decision making can be hampered by insufficient attention to the development of appropriate decision support processes. It is not only the products used to facilitate decision making that are important, such as scientific forecasts, scenarios, maps, cost-benefit analyses, and epidemiological data, but also the decision making process itself. For example, if the processes by which the information has been developed appear biased, decision makers may be reluctant to use the information (NRC, 2008a). Early engagement with stakeholders allows trust to build between information producers and users (Moser, 2005; NRC, 1996, 2008c). Early engagement also helps to ensure that the decision support information will be as complete and responsive to

Suggested Citation:"1 Introduction." National Research Council. 2010. Informing an Effective Response to Climate Change. Washington, DC: The National Academies Press. doi: 10.17226/12784.